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A Unified TLM Model for Wave Propagation of
Electrical and Optical Structures Considering

Permittivity and Permeability Tensors
.li~~Huang and Ke WhJ, Senior Member, IEEE

Abstract—A generalized transmission line matrix (TLM) for-
malism is proposed for unified simulation of wave propagation
problems. The present modeling is made possible with a new
TLM node that is derived to account for simultaneously the
electromagnetic effects of permittivity and permeability tensors
of material. It is shown, through numerical examples, that the
new node-based TLM algorithm in the frequency domain can be
used to solve a large class of complex electromagnetic problems
ranging from microwave circuits to optical devices. A dynamic
solution for the r-cut sapphke-based microstrip is presented that
highlights its application to high-temperature superconducting
microwave circuits.

I. INTRODUCTION

I

T HAS BEEN recognized that various electromagnetic
materials are always the cornerstone for the development

of integrated structures ranging from radio-frequency (RF),
microwave to optical circuits. With ever-increasing complexity
of geometry and material property, designing these circuits
requires more and more sophisticated field theoretical-based
tools to predict their electrical and/or optical characteristics.
Usually, such CAD tools should precisely account for any

possible parametric effect of structure at a given frequency
so that the length of design cycle and the cost related to
experiments as well as the tuning procedure of post-fabrication
could be minimized.

Much work in the field of CAD that has been done so far is
mainly concerned with wave propagations under the consid-
eration or assumption of isotropic or diagonal tensor property
of material. This scenario is in fact related to and also limited
by the computational problem of the modeling technique used
in the CAD. Unfortunately, a lot of circuit materials exhibit

more and less anisotropic behavior under certain circumstances
that cannot be ignored in the circuit simulation. This is in
particular important for a class of microwave and optical mate-
rials, sapphire substrate for high-temperature superconducting
circuits [1], [2], LibN03 waveguide for electro-optical devices
[3], [4], to name two examples. Nonreciprocal microwave
devices [5] opt to deal with anisotropic medium such as ferrite
which exhibits Hermitian-type permeability tensor. Obviously,
an accurate theoretical characterization involving arbitrary
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tensors is the bottleneck for successful design and applications
of anisotropic material-based circuits and devices. A unified
field modeling is highly prefemed that is able to consider

generalized tensor conditions and also to handle irregular
geometry of structure.

The transmission line matrix (TLM) technique [6]–[8] is
well known for its capability in treating a wide range of
electromagnetic problems with a great flexibility in terms of
geometrical irregularity and material parameters. The equiva-
lence between Maxwell’s equation and circuit network allows
this technique to solve complex problems in both time- and
frequency-domains [9], [10]. This is done with a number of
hybrid and condensed nodes [11]–[14], notably, the symmetri-

cal condensed node (SCN). The SCN was initially proposed to
handle isotropic and nondispersive materials. A subsequent ex-

tension has made it possible to include the diagonal anisotropic
and dispersive properties of material [15], [16].

In this paper, a generalized TLM node is proposed and
formulated to account for both arbitrary permittivity and per-
meability tensors. Using the present node, a frequency domain
TLM algorithm is derived to address various computational

issues of nondiagonal tensor problems encountered in the
practical situations, Numerical examples are presented for

two case studies: Rectangular waveguide partially filled with
magnetized ferrite and microstrip line deposited on m-cut and

r-cut sapphire substrates. Thus, the usefulness of the proposed
modeling is verified and also highlighted by its application of
a hybrid-mode analysis to the sapphire-based high-temperature
superconducting microwave integrated circuits.

II. THEORY

A. Generalized TLM Node Formulation

The generalized tensors ~ and ~ for an anisotropic medium
in a rectangular Cartesian coordinate can be expressed in the
following form
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Space representation of the TLM symmetrical condensed node.

The Maxwell’s equations are then formulated in terms of

electric and magnetic fields inside the anisotropic material as
follows

8EZ 8EY 6’Ez 6’HZ 8Hz
— (2b)

&o&y’ at + &O&yyat + ‘OEyz at = 8Z – a%
8EZ 3EY ilEz i3HY 8Hz

— (2C)
‘o&z’ at + ‘OEzy l% + ‘o&zz (% = az – Oy

(2f)

Each of these scalar field equations can be transformed into

transmission line network (Johns’ node). Following Johns’
node (Fig. 1) that represents a block of space dimensions, any
function of space and time is discretized in terms of graded
mesh

Fn(z, j, k) = F(zAx, jAy, kAz,n At) (3)

where Ax, Ay, Az are the grid dimensions and At is the
time increment. Now the following equality is established
that relates network voltages and currents to the electric and
magnetic fields

VZ=AX. Ex, VU= Ay. Ey, VZ=AZ. EZ

IZ =Ax . Zo . Hz/Yzz, IY = Ay . ZO “Hy/Yyy,

IZ =Az . Z. . HZ/YZZ

X =x/Az, Y = y/Ay, Z = z/A.z, T = t/At (4)

where YZZ = AxA1/pzzAyAz, YYY= AYA1/PYyAXAZ, Yzz

= AzA1/pzzAxAy, At= A1/2c, ZO is the characteristic
impedance of free space, Al is the least dimension of space
grids, and c is the velocity of light.
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Substituting (41) into (2) leads to a set of coupled differential

equations

Yezz + 2(YYV+ Y,. ) av. + Y..y 8VY + Ye., avz

2 dT 2 8T 2 (3T

(5a)
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Clearly, (5) can be exactly reduced to the formulation of the
hybrid SCN developed in [12], [15] as long as the off-diagonal
elements of both perrnittivity and permeability tensors are
vanishing. Note that the equivalent voltages V., Vy,V. and
currents I., Iy, IZ are normally determined by applying the
same procedure as in [17]. As such, a pair of decoupled matrix
equations are found to be
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in which

VZ = 2[YyY(V~ + V;)+ Yzz(Vf+ vfz)+ ‘ezzvf3

+ Yezyvjj + Lzq51

vu = 2[Y.z(v~+ Vj)+ Y.. (VJ + V;l) + yegzv;3

‘1+ J’leyyv~4 + Yey.zvls

Ifz = 2[Y,.(V;+ v;)+ Yvv(v;+ V:o)+ %.V:3

+ Yezuvf4 + %ZV[5]

0. = 2(v:+ V;– V; – V; + YmzVV;7 + %WV;8)

@u = 2(V; + V;o – V;– V;+ ymgzv&,+ ym~zv&)

O, = 2(V;+ U;2– V; – v;] + Ymz.zvffj+ %uYV;7)

Yez = Ye.. + 2(Yyg + Y.,), Y,y = Yeyv + 2(Y.Z + Y..)

Y.z =1:.. + 2(YZZ + Ygg), Ymm = Ymg = Ymz = 4.

Solving matrix (6a) and (6b), the equivalent voltages and
currents of the node are given by

V.= :( AZZWZ+ A.VVu+ AZ.UZ) (7a)

Vv = ~ (AY.~z + AYY~y + Ay.Vz) (7b)

V.= &(Az.% + A.VVV + AzzIUz) (7C)

1.= &( B.Z@.+ %@, + &z@’z) (7d)

IY= *(%z@z + %@, + q/z@z) (7e)

Iz=& (%0. + Bzy@,+ Bz2@.) (7f)

with

A..= Y&YeZ– YeZYYegZ,AZV= YeZyY&Z– YeZYYeZ,

AZ.= Y=ZYY.YZ– YeyYeZz

AYZ= Y.,ZZY.ZZ– YeVZYeZ,AYY= YeZYeZ– Y&ZYeZZ,

A,Z= Y.yZY&Z– YeZYeYZ

An = Y.gzY.zY– YeYY..., A;y= Ye.YY..x– Y Yezy .ss7

A..= Y&.Y.y– Y.XYY.YZ

BZX= YmYYmZ– YmZYYmyZ,

B.p= YmZVYmZZ– YmZVYmZ,

B.,= YmZ.YmYz– YmyYmZz

BVZ= YmZZYmZ.– YmYZYmZ,

Byy= YmZYmZ– YmZZYmZX,
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B..= YmxYmY– ym.YymY.

Y Yezy Yezz
Ae = Y::. Y.y Yevz ,

Y Y,zy Ye.ezz

Y Ym.y Ymzz
Am = Y::z Ymy Ymyz

Y~.. Ymzy Ymz

Since the SCN can be represented by three pairs of equiv-
alent shunt and series nodes [18], averaging the appropriate
voltages and currents at the center of the node yields six

pairs of hybrid equations that interrelate reflected and incident
voltages, such as

V:= V.+ IZ– V’.

V:z= V.– I=– V:’z (8a)

V;=v. –lu–v;

V;= VX+IV– V; (8b)

V;= VY– IZ– V;l

V;l=vv+lz–v; (8c)

V:= VY+IZ– V;

V;= VY–l%– V: (8d)

V;= VZ– IZ– V:

V;= VZ+I. –V: (8e)

v;=vz+Ig–v;o

V:. =V2 –Ig – v:. (8f)

The combination of (8) with (7) leads to a generalized 18 x
18 scattering matrix which also takes into account the open-
and short-circuit stubs. These stubs are added to account for
the cell topology, permittivity and permeability tensors. The
matrix consists of a number of explicit elements, such as

2AXZYVY 2B
S29= *e +*–1.

B. Frequency-Domain Algorithm for Eigenvalue Problems

A TLM algorithm based on the proposed node is imple-
mented in the frequency domain, This is to examine the

usefulness of the present theory for circuit problems dealing
with frequency-dependent permittivity and permeability ten-
sors such as magnetized ferrite. The concept of the frequency
domain TLM (FDTLM) has been well established in [10], [13],
and [14]. Due to the anisotropic property of material, however,
the original eigenvalue equation [10], [13] for waveguiding
structures is no longer valid. Some modifications are re-
quired with regards to the nonreciprocity under the anisotropic
medium in the waveguiding structure.

Under the TLM framework, any waveguiding structure
is discretized as an infinitely long periodic network with a

periodicity of Ax in the propagation direction. Therefore, the
eigenvalue equation is constructed from only one slice of
waveguide which contains simply one node in the propagation
direction as shown in Fig. 2. In this case, the scattering matrix
is given by

(9)

where al,2 denotes the incident voltage vector and bl,2 the re-
flected voltage vector. To determine propagation constants and
corresponding transverse field profiles of a specific waveguide
mode, a transfer matrix A is derived first from the scattering
counterpart, such as

N=’AI”RI=’A’”H”’-7AZ“0)
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‘m’
Fig.2. Network equivalence for a slice of waveguide with a length Az of
in z direction.
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Fig. 3. Phase constant of the TEIO mode of a rectangular waveguide
loaded with a ferrite slab (a = 22.86 mm, b = 10.16 mm, c = 2.286 mm,
d = 8.0 mm, &r = 9.0, 47rAZ, = 2000G~, HO = 2000,).

This matrix then yields the characteristic eigenvalue equa-
tion

‘“RI=R”N‘=”AZ ’11)
The propagation constant T is easily deduced from the eigen-
value R and the transverse field profile of mode pertaining to

the eigenvahte is obtained by the eigenvector of the matrix A.

III. NUMERICAL EXAMPLES

To validate the proposed TLM algorithm in the frequency
domain and also its computational accuracy, a variety of
waveguiding structures involving complex anisotropic ma-
terials are calculated and compared with results from the

analytical solution and other numerical techniques available
in the literature.

A. Rectangular Waveguide Partially Filled

with Magnetized Ferrite

Since a rectangular waveguide containing ferrite with trans-
verse magnetization presents a very simple example for which
analytical solutions are available, a comparison can be ef-
fectively made to examine and validate the proposed TLM
model. In this case, the permeability tensor of a ferrite slab
is degenerated to be

~=po.

1!: ~y::l=Lo[::‘!7’12)

where N and k are determined in the conventional way [5]. Fig.
3 shows dispersion characteristics of the TEIO mode. Even if
a coarse mesh (8x 4 nodes) is used, the results obtained by the
present modeling are in excellent agreement with the exact
solutions [5].

Fig. 4. Microstrip geometry showing the crystal (z’, y’ ) and microstrip
(z, y) axes.
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Fig. 5. Normalized propagation constant ,6/ko at 1,5, and 10 GHz obtained
by the present model for microstrip lines deposited on the m-cut sapphire as
a function of the rotation angle 0 of the optic axis. A comparison is made
between [19] and thio technique for w = h = 0.5 mm.

B. Microstrip on m-cut Sapphire Substrate

A microstrip line is deposited on the m-cut sapphire sub-
strate as shown in Fig. 4. Suppose that the principal axes
(z’, y’) of the sapphire substrate form an angle O with respect
to the microstrip coordinate system (z, g). The relative per-
mittivity tensor are given in the microstrip coordinate system
by

[1

Ezz ~%Y o
~ = Eyz &vv o. (13)

o 0 E.z

The elements of above ~ are calculated by the following
analytical equaticms

Ezz=ElCOS2 9 + E!2sin2 9

EYY= S1 sin2 0 + E2 cos2 O

&zy =&uz = (EI– &z) sin o Cos 19

Ezz ‘= El. (14)

With reference to [19], the parameters of structure are
defined by .sl = 9.4, e2 = 11.6, w = h = 0.5mm. Fig.
5 illustrates the frequency-dependent characteristics of ~/ko.
A comparison between two different approaches is made and
shows a good agreement.

C. Microstrip on r-cut Sapphire Substrate

The sapphire material presents an excellent candidate for
substrate use of high-temperature superconducting circuits [1],
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Fig. 6. (a) Morphological hexogonal nnit cell of sapphire. (b) Arbitrarily
oriented r-cnt sapphire-based microstrip.

[2]. This is mainly attributed to its low dielectric loss, excellent
thermal coefficient, rigid mechanical strength, and low dielec-
tric permittivity. There are models available for the z-cut and
m-cut microstrips [20]. It has been recently suggested that the
r-cut microstrip be more attractive for superconductive circuits

[21]. However, the analysis of such a structure becomes
very tedious because of the tensor complexity. Quasi-static
characteristics were given in [21] as functions of the strip
geometry and its orientation on the surface of the substrate. To
obtain the tensor under the Cartesian, both the morphological
hexagonal unit cell of sapphire and the arbitrarily oriented r-
cut based microstrip are shown in Fig. 6 [21]. The dielectric
permittivity tensor of the sapphire in the principal axis of the
crystal is given by

70=F+il. ‘1’)
A transformation of this tensor for the r-cut (0 = 57.6° )

sapphire is done with the operator Ur

[

10 0
il.= o Coso

1

sin 0 . (16)

O –sin Q costl

The new tensor in (d, y’, z!) coordinates is

-0 +.-1

[

9.4 0 0*I -
E=uv. c .Uv = o 10.03

1

–0.99 . (17)
o –0.99 10.97

TABLE I
THE TENSORELEMENTSDESCRIBEDIN EQUATION(19) AS A

FUNCTIONOF THEARBITRARILYORIENTEDROTATIONANGLE 8

79
o“
22.5°
45°
67.5°
90°
112.5°
135°
157.5”
180°

E.. EW &z Em ,Z ,ZE E
10.97 10.03 9.40 -0.99 0 0
10.74 10.03 9.63 -0.92 0.55 -0.38
10.18 10.03 10.18 -0,70 0.78 -070
9.63 10.03 10.74 -0.38 0.55 -0.92
9.40 10.03 10.97 0 0 -0.99
9.63 10.03 10.74 0.38 -0.55 -0.92
10.18 10.03 10.18 0.70 -0.78 -0.70
10.74 10.03 9.63 0.92 -0.55 -0.38

10.97 10.03 9.40 0.99 0 0

,,e,~
o 50 100 150

Angle $0

Fig. 7. Propagation characteristics at 1, 5, and 10 GHz for a microstrip
hne deposited on the r-cut sapphire as a function of the arbitrarily oriented
rotation angle O (w = h = 0.5 mm).

Given an arbitrarily oriented microstrip (Fig. 6(b)), a rota-

tion around the v’-axis of the substrate through the angle O is

performed with the operator U.,which leads to

[-

Cos ‘8 O sin O

1

;.= o 1 0 (18)
sin 79 0 cos 0

The final tensor in (x”, y“, z“) coordinates is

[1

E TT Ezv ~u*//
~= Eyx EYY &yz (19)

&zr ~~Y ~~z

in which ~ZV = Su,,, CZZ = EZ,,, ~YZ = ~zy. The elements
of this tensor as a function of the angle 8 are given in
the Table I. Fig. 7 shows normalized propagation constants
against the angle t!? of the r-cut based microstrip line with
w i h = 2 at different frequencies. It indicates that the influence
of the angle # on dispersion characteristics is more pronounced
between fi = 45° and # = 90°. On the other hand, the
frequency dependency seems to be linear for a given angle 0.
Since the superconductive microstrip line based on the r-cut
sapphire may find applications at higher frequencies going into
millimeter-wave range, it is absolutely imperative to consider
the dispersion effect under such an anisotropic condition.

IV. CONCLUSION

In this paper, a generalized TLM node has been derived un-
der the condition of both permittivity and permeability tensors.
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A TLM algorithm in the frequency domain using the proposed

node is developed and used to calculate eigenvalue problems

of waveguiding structures involving arbitrary anisotropic prop-

erties. A number of examples using complex tensors verify the

present theory and demonstrate its usefulness. In particular,
frequency-dependent characteristics of r--cut sapphire-based
microstrips are obtained. It is believed that the present tool

paves the way for field-theoretical design and optimization of
high-Tc superconducting microwave devices. On this basis, it

is concluded that a unified TLM solver can be made to analyze,
design, and optimize a large class of complex structures
ranging from microwave circuits to optical devices.
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